Lattices for Guggenheim Cooling

R. B. Palmer (BNL)

FNAL Mini-Workshop

10/22/09

- 1. Required magnetic fields for cooling in solenoid (or HCC)
- 2. Effects of single and double periodicity
- 3. RFOFO lattices for 201 & 402 MHz
- 4. Efficiency
- 5. Magnetic Insulation
- 6.805 MHz lattice
- 7. Conclusion

Solenoid fields for Cooling

For cooling in hydrogen, without windows, at \approx gamma=2 (chosen to avoid rapid increase in dp/p):

Equilibriumemittance
$$\epsilon_{\perp}(equilib) = \frac{C\beta_{\perp}}{\beta_v} = \frac{2 \gamma Cm_{\mu}}{c B}$$

$$B \approx \frac{10 \ 10^{-3}}{\epsilon_{\perp}(equi)}$$

With emittance exchange giving $J_x = J_y = J_z$ then

$$B \approx \left(\frac{3}{2}\right) \frac{10 \ 10^{-3}}{\epsilon_{\perp}(equ)}$$

Stage	rf freq	emit	В
	MHz	π mm	Т
1	201	2	3.75
2	401	1	7.5
3	805	0.32	23

- In HCC these are indeed the approximate axial fields needed
- ullet But in a periodic lattice, the eta_{\perp} at the absorber can be less than the above

Decreasing beta in Solenoids by adding periodicity

In practice, the solenoid fields are usually altering to avoid a buildup of angular momentum - our homework will show how this occurs

Super FOFO

Double periodicity

Polarities:

shown:
$$| + + | + + |$$

SFOFO: $| + + | - - |$
RFOFO: $| + - | + - |$

- Beta lower over finite momentum range
- Beta lower by about 1/2 solenoid

RFOFO chosen for Ring/Guggenheim

because all cells identical removes 1/2 the resonances

RFOFO Ring

Simulated with realistic Maxwellian Fields
But not fields from actual solenoids
Simulations with real fields give the same results

Lattices of this type ok at 201 and 402 MHz

ICOOL Simulated Performance

- Assume a Guggenheim will behave like the ring
- No Windows

An interesting detail

The emittance exchange is initially all in x But there is enough phase rotation in x, y to eventually give nearly symmetric cooling

Efficiency vs. length for old RFOFO

Define: Efficiency =
$$Q = \frac{d\epsilon_3/\epsilon_3}{dn/n}$$

- Mismatch and Scraping losses at start
- Decay losses as emittances approach equilibrium at end
- Sweet region in between (Q \approx 15)
- If tapered then the entire channel is operated in the sweet region

Required 6D cooling in RFOFO lattices from 280,000 to 2.1 (mm³) So expected transmission if tapered

$$\frac{n_{final}}{n_{initial}} = \left(\frac{2.1}{115,000}\right)^{1/15} = 0.48$$
Good

Mag Insulation of Guggenheim

 \bullet Surface fields now \approx 2 times acceleration

4

6

• Shunt impedance worse

Absorber

2

- Higher content of Fourier content in B vs z
- Because used for so much cooling losses are unacceptable (3% vs 7% transmission)

805 MHz Guggenheim has to be different

Not practical to put 10-12 T solenoids outside rf

ullet Less efficient (Qpprox 8) but only needed for limited cooling so ok

Mag-Insulated version of 805 MHz lattice

Magnetically insulated version has simular fields to standard version and will probably show similar performance

Summary

Stage	rf freq	emit(equ)	B(solenoid)	B(lattice)	ratio
	MHz	π mm	Т	Т	
1	201	2	3.75	2.6	0.7
2	401	1	7.5	5.2	0.7
3	805	0.32*	23	12*	0.52

^{*} Scaled from lattice shown

Conclusions

- Periodic lattices allow lower β s for same magnetic fields
- Double periodicity lattices giver greater momentum acceptance
- Simulations of lattices with coils outside give good efficiency
- Magnetically insulated lattices have worse performance
- One hopes that Be Cavities will solve the problem at least for higher frequencies
- Alternatively: HCC or FOFO gas filled lattices ok for 201 and 402 MHz stages, but these will not have factor 2 gain from focusing
- Magnetically insulated 805 HHz probably acceptable for cooling to lowest emittances